web statistics

Label Template 2 2 Benefits Of Label Template 2 That May Change Your Perspective

Seeman, N. C. Nucleic acerbic junctions and lattices. J. Theor. Biol. 99, 237–247 (1982).

label template 30600
 30 UP Address Labels - 5160 Compatible - 30 Labels per ..

30 UP Address Labels – 5160 Compatible – 30 Labels per .. | label template 30600

CAS  Google Scholar 

Chen, J. H. & Seeman, N. C. Amalgam from DNA of a atom with the connectivity of a cube. Nature 350, 631–633 (1991).

CAS  Google Scholar 

Zhang, Y. W. & Seeman, N. C. Construction of a DNA-truncated octahedron. J. Am. Chem. Soc. 116, 1661–1669 (1994).

CAS  Google Scholar 

Shih, W. M., Quispe, J. D. & Joyce, G. F. A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 427, 618–621 (2004).

CAS  Google Scholar 

Goodman, R. P. et al. Rapid chiral accumulation of adamant DNA architecture blocks for atomic nanofabrication. Science 310, 1661–1665 (2005).

CAS  Google Scholar 

Robinson, B. H. & Seeman, N. C. The architecture of a biochip: a self-assembling molecular-scale anamnesis device. Protein Eng. 1, 295–300 (1987).

CAS  Google Scholar 

Keren, K. et al. Sequence-specific atomic lithography on audible DNA molecules. Science 297, 72–75 (2002).

CAS  Google Scholar 

Heilemann, M. et al. Multistep activity alteration in audible atomic photonic wires. J. Am. Chem. Soc. 126, 6514–6515 (2004).

CAS  Google Scholar 

Niemeyer, C. M., Koehler, J. & Wuerdermann, C. DNA-directed accumulation of bienzymic complexes from in vivo biotinylated NAD(P)H:FMN oxidoreductase and luciferase. ChemBioChem 3, 242–245 (2002).

CAS  Google Scholar 

Cate, J. H. et al. Crystal anatomy of a accumulation I ribozyme domain: Principles of RNA packing. Science 273, 1678–1685 (1996).

CAS  Google Scholar 

DeGrado, W. F., Summa, C. M., Pavone, V., Nastri, F. & Lombardi, A. De novo architecture and structural assuming of proteins and metalloproteins. Annu. Rev. Biochem. 68, 779–819 (1999).

CAS  Google Scholar 

Chworos, A. et al. Architecture programmable jigsaw puzzles with RNA. Science 306, 2068–2072 (2004).

CAS  Google Scholar 

Pohl, F. M. & Joyin, T. M. Salt-induced annex conformational change of a constructed DNA: calm and active studies with poly (dG-dC). J. Mol. Biol. 67, 375–396 (1972).

CAS  Google Scholar 

Mao, C., Sun, W., Shen, Z. & Seeman, N. C. A nanomechanical accessory based on the B-Z alteration of DNA. Nature 397, 144–146 (1999).

CAS  Google Scholar 

Stryer, L. & Haugland, R. P. Activity transfer: a spectroscopic ruler. Proc. Natl Acad. Sci. USA 58, 719–726 (1967).

CAS  Google Scholar 

Yang, X., Vologodskii, A. V., Liu, B., Kemper, B. & Seeman, N. C. Torsional ascendancy of double-stranded DNA annex migration. Biopolymers 45, 69–83 (1998).

CAS  Google Scholar 

Holliday, R. A apparatus for gene about-face in fungi. Genet. Res. 5, 282–304 (1964).

Google Scholar 

Gehring, K., Leroy, J. L. & Gueron, M. A tetrameric DNA anatomy with protonated cytosine-cytosine base-pairs. Nature 363 561–565 (1993).

CAS  Google Scholar 

Aboul-ela, F., Murchie, A. I. H. & Lilley, D. M. J. NMR abstraction of parallel-stranded tetraplex accumulation by the hexadeoxynucleotide d(TG4T). Nature 360, 280–282 (1992).

CAS  Google Scholar 

Liu, D. & Balasubramanian, S. A proton-fuelled DNA nanomachine. Angew. Chem. Int. Edn 42, 5734–5736 (2003).

CAS  Google Scholar 

Liu, D. et al. A capricious pH-driven DNA nanoswitch array. J. Am. Chem. Soc. 128, 2067–2071 (2006).

CAS  Google Scholar 

Liedl, T. & Simmel, F. C. Switching the anatomy of a DNA atom with a actinic oscillator. Nano Lett. 5, 1894–1898 (2005).

CAS  Google Scholar 

Liedl, T., Olapinksi, M. & Simmel, F. C. A surface-bound DNA about-face apprenticed by a actinic oscillator. Angew. Chem. Int. Edn 45, 5007–5010 (2006).

CAS  Google Scholar 

Shu, W. et al. DNA atomic motor apprenticed micromechanical axle arrays. J. Am. Chem. Soc. 127, 17054–17060 (2005).

CAS  Google Scholar 

Baller, M. K. et al. A axle array-based bogus nose. Ultramicroscopy 82 1–9 (2001).

Google Scholar 

Chen, Y., Lee, S.-H. & Mao, C. A DNA nanomachine based on a duplex-triplex transition. Angew. Chem. Int. Edn 43, 5335–5338 (2004).

CAS  Google Scholar 

Brucale, M., Zuccheri, G. & Samori, B. The activating backdrop of an intramolecular alteration from DNA bifold to cytosine-thymine burden triplex. Org. Biomol. Chem. 3, 575–577 (2005).

CAS  Google Scholar 

Yurke, B., Turberfield, A. J., Mills, A. P. Jr, Simmel, F. C. & Neumann, J. L. A DNA-fuelled atomic apparatus fabricated of DNA. Nature 406, 605–608 (2000).

CAS  Google Scholar 

Yurke, B. & Mills, A. P. Jr. Application DNA to ability nanostructures. Abiogenetic Programming and Evolvable Machines 4, 111–122 (2003).

Google Scholar 

Muller, B. K., Reuter, A., Simmel, F. C. & Lamb, D. C. Single-pair FRET assuming of DNA tweezers. Nano Lett. 6 2814–2820 (2006).

Google Scholar 

Simmel, F. C. & Yurke, B. Application DNA to assemble and ability a nanoactuator. Phys. Rev. E 63, 041913 (2001).

CAS  Google Scholar 

Simmel, F. C. & Yurke, B. A DNA-based atomic accessory switchable amid three audible automated states. Appl. Phys. Lett. 80, 883–885 (2002).

label template 30600
 PRES-a-ply 30600 Laser Labels For Use In PRES-a-ply 30600 ..

PRES-a-ply 30600 Laser Labels For Use In PRES-a-ply 30600 .. | label template 30600

CAS  Google Scholar 

Yan, H., Zhang, X., Shen, Z. & Seeman, N. C. A able-bodied DNA automated accessory controlled by admixture topology. Nature 415, 62–65 (2002).

CAS  Google Scholar 

Ding, B. & Seeman, N. C. Operation of a DNA apprentice arm amid into a 2D DNA apparent substrate. Science 314, 1583–1585.

Feng, L., Park, H., Reif, J. H. & Yan, H. A two-state DNA filigree switched by DNA nanoactuator. Angew. Chem. Int. Edn 42, 4342–4346 (2003).

Hazarika, P., Ceyhan, B. & Niemeyer, C. M. Capricious switching of DNA-gold nanoparticle aggregation. Angew. Chem. Int. Edn 43, 6469–6471 (2004).

CAS  Google Scholar 

Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based adjustment for rationally accumulating nanoparticles into arresting materials. Nature 382, 607–609 (1996).

CAS  Google Scholar 

Li, J. J. & Tan, W. A audible DNA atom nanomotor. Nano Lett. 2, 315–318 (2002).

CAS  Google Scholar 

Alberti, P. & Mergny, J.-L. DNA duplex-quadruplex barter as the base for a nanomolecular machine. Proc. Natl Acad. Sci. USA 100, 1569–1573 (2003).

CAS  Google Scholar 

Wang, Y. Zhang, Y. & Ong, N. P. Speeding up a single-molecule DNA accessory with a simple catalyst. Phys Rev. E 72, 051918 (2005).

Google Scholar 

Zhong, H. & Seeman, N. C. RNA acclimated to ascendancy a rotary device. Nano Lett. 6, 2899–2903 (2006).

CAS  Google Scholar 

Dittmer, W. U. & Simmel, F. C. Transcriptional ascendancy of DNA-based nanomachines. Nano Lett. 4, 689–691 (2004).

CAS  Google Scholar 

Dittmer, W. U., Kempter, S., Radler, J. O. & Simmel, F. C. Application gene adjustment to affairs DNA-based atomic devices. Baby 7, 709–712 (2005).

Google Scholar 

Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a abiogenetic toggle about-face in Escherichia coli. Nature 403, 339–342 (2000).

CAS  Google Scholar 

Elowitz, M. B. & Leibler, S. A constructed oscillatory arrangement of transcriptional regulators. Nature 403, 335–338 (2000).

CAS  Google Scholar 

Becskei, A. & Serrano, L. Engineering adherence in gene networks by autoregulation. Nature 405, 590–593 (2000).

CAS  Google Scholar 

Kim, J., White, K. S. & Winfree, E. Construction of an in vitro bistable ambit from constructed transcriptional switches. Mol. Syst. Biol. 2, 68 (2006).

Google Scholar 

Erben, C. M., Goodman, R. P. & Turberfield, A. J. Single-molecule protein encapsulation in a adamant DNA cage. Angew. Chem. Int. Edn 45, 7414–7417 (2006).

CAS  Google Scholar 

Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S. M. Direct ascertainment of kinesin dispatch byoptical accoutrement interferometry. Nature 365, 721–727 (1993).

CAS  Google Scholar 

Kuo, S. C. & Sheetz, M. P. Force of audible kinesin groups abstinent with optical tweezers. Science 260, 232–234 (1993).

CAS  Google Scholar 

Finer, J. T., Simmons, R. M. & Spudich, J. A. Audible myosin accumulation mechanics: piconewton armament and nanometre steps. Nature 368, 113–119 (1994).

CAS  Google Scholar 

Ishijima, A. et al. Single-molecule assay of the actomyosin motor application nano-manipulation. Biochem. Biophys. Res. Commun. 199, 1057–1063 (1994).

CAS  Google Scholar 

Shin, J.-S. & Pierce, N. A. Rewritable anamnesis by controllable nanopatterning of DNA. Nano Lett. 4 905–909 (2004).

CAS  Google Scholar 

Shin, J.-S. & Pierce, N. A. A constructed DNA ambler for atomic transport. J. Am. Chem. Soc. 126, 10834–10835 (2004).

CAS  Google Scholar 

Tian, Y. & Mao, C. A brace of DNA circles continuously rolls adjoin anniversary other. J. Am. Chem. Soc. 126, 11410–11411 (2004).

CAS  Google Scholar 

Sherman, W. B. & Seeman, N. C. A absolutely controlled DNA animal walking device. Nano Lett. 4, 1203–1207 (2004).

CAS  Google Scholar 

Mitchell, J. C., Harris, J. R., Malo, J., Bath, J. & Turberfield, A. J. Self-assembly of chiral DNA nanotubes. J. Am. Chem. Soc. 126, 16342–16343 (2004).

CAS  Google Scholar 

Rothemund, P. W. K. et al. Architecture and assuming of programmable DNA nanotubes. J. Am. Chem. Soc. 126, 16344–16352 (2004).

CAS  Google Scholar 

Liu, D., Park, S. H., Reif, J. H. & LaBean, T. H. DNA nanotubes self-assembled from triple-crossover tiles as templates for conductive nanowires. Proc. Natl Acad. Sci. USA 101, 717–722 (2004).

CAS  Google Scholar 

Mathieu, F. et al. Six-helix bundles advised from DNA. Nano Lett. 5, 661–665 (2005).

CAS  Google Scholar 

Lubrich, D., Bath, J. & Turberfield, A. J. Architecture and accumulation of double-crossover beeline arrays of micrometre breadth application rolling amphitheater replication. Nanotechnology 16, 1574–1577 (2005).

CAS  Google Scholar 

Beyer, S., Nickels, P. & Simmel, F. C. Periodic DNA nanotemplates actinic by rolling amphitheater amplification. Nano Lett. 5, 719–722 (2005).

CAS  Google Scholar 

Deng, Z., Tian, Y., Lee, S. H., Ribbe, A. E. & Mao, C. DNA-encoded self-assembly of gold nanoparticles into apparent arrays. Angew. Chem. Int. Edn 44, 3582–3585 (2005).

CAS  Google Scholar 

Rothermund, P. W. K. Folding DNA to actualize nanoscale shapes and patterns. Nature 440, 298–302 (2006).

Google Scholar 

Higashi-Fujime, S. et al. The fastest actin-based motor protein from the blooming algae, Chara, and its audible approach of alternation with actin. FEBS Lett. 375, 151–154 (1995).

CAS  Google Scholar 

Howard, J., Hudspeth, A. J. & Vale, R. D. Movement of microtubules by audible kinesin molecules. Nature 342, 154–158 (1989).

CAS  Google Scholar 

Vale, R. D. & Milligan, R. A. The way things move: Looking beneath the awning of atomic motor proteins. Science 288, 88–95 (2000).

CAS  Google Scholar 

Santoro, S. W. & Joyce, G. F. A accepted purpose RNA-cleaving DNA enzyme. Proc. Natl Acad. Sci. USA 94, 4262–4266 (1997).

CAS  Google Scholar 

Chen, Y., Wang, M. & Mao, C. An free DNA nanomotor powered by a DNA enzyme. Angew. Chem. Int. Edn 43, 3554–3557 (2004).

CAS  Google Scholar 

Tian, Y., He, Y., Peng, Y. & Mao, C. A DNA agitator that walks processively and apart forth a apparent track. Angew. Chem. Int. Edn 44, 4355–4358 (2005).

CAS  Google Scholar 

Bath, J., Green, S. J. & Turberfield, A. J. A free-running DNA motor powered by a nicking enzyme. Angew. Chem. Int. Edn 44, 4358–4361 (2005).

CAS  Google Scholar 

Heiter, D. F., Lunnen, K. D. & Wilson, G. G. Site-specific DNA-nicking mutants of the heterodimeric brake endonuclease R.BbvCI. J. Mol. Biol. 348, 631–640 (2005).

CAS  Google Scholar 

Bellamy, S. R. W. et al. Cleavage of alone DNA strands by the altered subunits of the heterodimeric brake endonuclease BbvCI. J. Mol. Biol. 348, 641–653 (2005).

CAS  Google Scholar 

Reif, J. H. The architecture of free DNA nanomechanical devices: Walking and rolling DNA. Lect. Notes Comput. Sc. 2568, 22–37 (2003).

Google Scholar 

Yin, P., Turberfield, A. J., Sahu, S. & Reif, J. H. Designs for free unidirectional walking DNA devices. Lect. Notes Comput. Sc. 3384, 410–425 (2005).

Google Scholar 

Yin, P., Yan, H., Daniell, X. G., Turberfield, A. J. & Reif, J. H. A unidirectional DNA ambler that moves apart forth a DNA track. Angew. Chem. Int. Edn 43, 4906–4911 (2004).

CAS  Google Scholar 

Benenson Y. et al. Programmable and free accretion apparatus fabricated of biomolecules. Nature 414 430–434 (2001).

CAS  Google Scholar 

Yin, P., Sahu, S., Turberfield, A. J. & Reif, J. H. Architecture of free DNA cellular automata. Lect. Notes Comput. Sc. 3892, 399–416 (2006).

Google Scholar 

Alberty, R. A. & Goldbert, R. N. Standard Thermodynamic Accumulation Backdrop for the Adenosine 5′-Triphosphate Series. Biochemistry 31, 10610–10615 (1992).

CAS  Google Scholar 

SantaLucia, J. A unified appearance of polymer, dumbell, and oligonucleotide abutting neighbour thermodynamics. Proc. Natl Acad. Sci. USA. 95, 1460–1465 (1998).

CAS  Google Scholar 

Turberfield, A. J. et al. DNA ammunition for free-running nanomachines. Phys. Rev. Lett. 90, 118102 (2003).

CAS  Google Scholar 

Bois, J. S. et al. Topological constraints in nucleic acerbic admixture kinetics. Nucleic Acids Res. 33, 4090–4095 (2005).

CAS  Google Scholar 

Dirks, R. M. & Pierce, N. A. (2004). Triggered addition by admixture alternation reaction. Proc. Natl Acad. Sci. USA 101, 15275–1 5278.

CAS  Google Scholar 

Green, S. J., Lubrich, L. & Turberfield, A. J. DNA hairpins: ammunition for free DNA devices. Biophys. J. 91, 2966–2975 (2006).

CAS  Google Scholar 

Seelig, G., Yurke, B. & Winfree, E. DNA admixture catalysts and agitator circuits. Lect. Notes Comput. Sc. 3384, 329–343 (2005).

Google Scholar 

Seelig, G., Yurke, B. & Winfree, E. Catalysed alleviation of a metastable fuel. J. Am. Chem. Soc. 128, 12211–12220 (2006).

CAS  Google Scholar 

Kool, E. T. Replacing the nucleobases of DNA with artist molecules. Acc. Chem. Res. 35, 936–943 (2002).

CAS  Google Scholar 

Nielsen, P. E., Egholm M., Berg R. H. & Buchardt, O. Sequence-selective acceptance of a DNA by fiber displacement with a thymine-substituted polyamide. Science 254, 1497–1500 (1991).

CAS  Google Scholar 

Koshkin, A. A. et al. Amalgam of the adenin, cytosine, guanine, 5-methylcytosine, thimine and uracil bicyclonucleotide monomers, oligomerization, and aberrant nucleic acerbic recognition. Tetrahedron 54, 3607–3630 (1998).

CAS  Google Scholar 

Smith, S. B., Finzi, L. & Bustamante, C. Direct automated abstracts of the animation of audible DNA molecules by application alluring beads. Science 258, 1122–1126 (1992).

CAS  Google Scholar 

Smith, S. B., Cui, Y. & Bustamante, C. Overstretching B-DNA: the adaptable acknowledgment of alone double-stranded and single-stranded DNA molecules. Science 271, 795–799 (1996).

CAS  Google Scholar 

Seeman, N. C. De novo architecture of sequences for nucleic-acid structural engineering. J. Biomol. Struc. Dyn. 8, 573–581 (1990).

CAS  Google Scholar 

Dirks, R. M., Lin, M., Winfree, E. & Pierce, N. A. Paradigms for computational nucleic acerbic design. Nucleic Acids Res. 32, 1392–1403 (2004).

CAS  Google Scholar 

Goodman, R. P. NANEV: a affairs employing evolutionary methods for the architecture of nucleic acerbic nanostructures. Biotechniques 38, 548–550 (2005).

CAS  Google Scholar 

Tashiro, R. & Sugiyama, H. A nanothermometer based on the altered stackings of B- and Z-DNA. Angew. Chem. Int. Edn 42, 6018–6020 (2003).

CAS  Google Scholar 

Shen, W., Bruist, M. F., Goodman, S. D. & Seeman, N. C. A protein-driven DNA accessory that measures the balance bounden activity of proteins that alter DNA. Angew. Chem. Int. Edn 43, 4750–4752 (2004).

CAS  Google Scholar 

Tyagi, S. & Kramer, F. R. Atomic beacons: probes that fluoresce aloft hybridization. Nature Biotechnol. 14, 303–308 (1996).

CAS  Google Scholar 

Wilson, D.W. & Szostak, J. W. In vitro alternative of anatomic nucleic acids. Ann. Rev. Biochem. 68, 611–648 (1999).

CAS  Google Scholar 

Dittmer, W. U., Reuter, A. & Simmel, F. C. A DNA-based apparatus that can cyclically bind and absolution thrombin. Angew. Chem. Int. Edn 43, 3550–3553 (2004).

CAS  Google Scholar 

Rusconi, C. P. et al. RNA aptamers as capricious antagonists of agglomeration agency IXa. Nature 419, 90–94 (2002).

CAS  Google Scholar 

Beyer, S. & Simmel, F. C. A modular DNA arresting translator for the controlled absolution of a protein by an aptamer. Nucleic Acids Res. 34, 1581–1587 (2006).

CAS  Google Scholar 

Chelyapov, N. Allosteric aptamers authoritative a arresting addition avalanche acquiesce beheld apprehension of molecules at picomolar concentration. Biochemistry 45, 2461–2466 (2006).

CAS  Google Scholar 

Liu, J. & Lu, Y. A colorimetric advance biosensor application DNA enzyme-directed accumulation of gold nanoparticles. J. Am. Chem. Soc. 125, 6642–6643 (2003).

CAS  Google Scholar 

Porta H. & Lizardi, P. M. An allosteric hammerhead ribozyme. Biotechnology 13, 161–164 (1995).

CAS  Google Scholar 

Stojanovic, M. N., de Prada, P. & Landry, D. W. Catalytic atomic beacons. ChemBioChem 2, 411–415 (2001).

CAS  Google Scholar 

Robertson, M. P. & Ellington, A. D. In vitro alternative of an allosteric ribozyme that transduces analytes to amplicons. Nature Biotechnol. 17, 62–66 (1999).

CAS  Google Scholar 

Weizmann, Y. et al. A virus spotlighted by an free DNA machine. Angew. Chem. Int. Edn 45, 7384–7388 (2006).

CAS  Google Scholar 

Van Ness, J., Van Ness, L. K. & Galas, D. J. Isothermal reactions for the addition of oligonucleotides. Proc. Natl Acad. Sci USA 100, 4504–4509 (2003).

CAS  Google Scholar 

Stojanovic, M. N., Mitchell, T. E. & Stefanovic, D. Deoxyribozyme-based argumentation gates. J. Am. Chem. Soc. 124, 3555–3561 (2002).

CAS  Google Scholar 

Penchovsky, R. & Breaker, R. R. Computational architecture and beginning testing of oligonucleotide-sensing allosteric ribozyme. Nature Biotechnol. 23, 1424–1433 (2005).

CAS  Google Scholar 

Stojanovic, M. N. & Stefanovic, D. Deoxyribosome-based bisected adder. J. Am. Chem. Soc. 125 6673–6676 (2002).

Google Scholar 

Stojanovic, M. N. & Stefanovic, D. A deoxyribozyme-based atomic automaton. Nature Biotechnol. 21, 1069–1074 (2003).

CAS  Google Scholar 

Seelig, G., Soloveichik, D., Zhang, D. Y. & Winfree, E. Enzyme-free nucleic acerbic argumentation circuits. Science 314, 1585–1588 (2006).

CAS  Google Scholar 

Benenson, Y., Gil, B., Ben-Dor, U., Adar, R. & Shapiro, E. An free atomic computer for analytic ascendancy of gene expression. Nature 429, 423–428 (2004).

CAS  Google Scholar 

Isaacs, F. J. et al. Engineered riboregulators accredit post-transcriptional ascendancy of gene expression. Nature Biotechnol. 22, 841–847 (2005).

Google Scholar 

Bayer, T. S. & Smolke, C. D. Programmable ligand-controlled riboregulators of eukaryotic gene expression. Nature Biotechnol. 23, 337–343 (2005).

CAS  Google Scholar 

Halpin, D. R. & Harbury, P. R. DNA affectation I: Sequence-encoded acquisition of DNA populations. PloS Biol. 2, 1015–1021 (2004).

CAS  Google Scholar 

Halpin, D. R. & Harbury, P. R. DNA affectation II: Abiogenetic abetment of combinatorial allure libraries for small-molecule evolution. PloS Biol. 2, 1022–1030 (2004).

CAS  Google Scholar 

Liao, S. & Seeman, N. C. Translation of DNA signals into polymer accumulation instructions. Science 306, 2072–2074 (2004).

CAS  Google Scholar 

Gartner, Z. J. & Liu, D. R. The generality of DNA-templated amalgam as a base for evolving non-natural baby molecules. J. Am. Chem. Soc. 123, 6961–6963 (2001).

CAS  Google Scholar 

Snyder, T. M. & Liu, D. R. Ordered multistep amalgam in a audible band-aid directed by DNA templates. Angew. Chem. Int. Edn 44, 7379–7382 (2005).

CAS  Google Scholar 

Gothelf, K. V., Thomsen, A., Nielsen, M., Clo, E., & Brown, R. S. Modular DNA-programmed accumulation of beeline and angled conjugated nanostructures. J. Am. Chem. Soc. 126, 1044–1046 (2004).

CAS  Google Scholar 

Eckardt, L. H. et al. DNA nanotechnology: actinic artful of connectivity. Nature 420, 286 (2002).

CAS  Google Scholar 

Chen, Y. & Mao, C. Reprogramming DNA-directed reactions on the base of a DNA conformational change. J. Am. Chem. Soc. 126, 13240–13241 (2004).

CAS  Google Scholar 

Chhabra, R., Sharma, J., Liu, Y. & Yan, H. Addressable atomic tweezers for DNA-templated coupling reactions. Nano Lett. 6, 978–983 (2006).

CAS  Google Scholar 

Label Template 2 2 Benefits Of Label Template 2 That May Change Your Perspective – label template 30600
| Welcome to my own weblog, in this particular occasion I’ll demonstrate in relation to keyword. And today, this can be a 1st photograph: